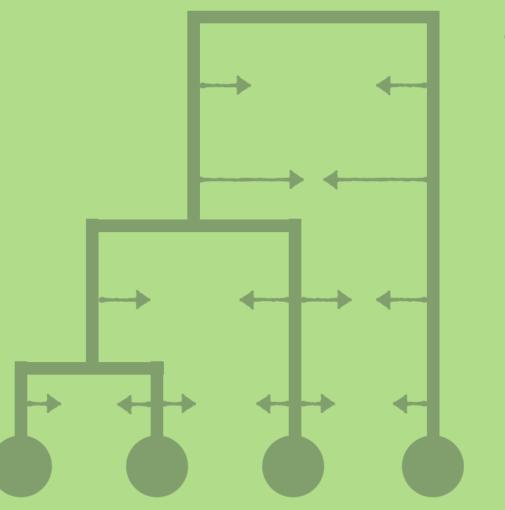
# GENOME 541: population genetic inference I. The coalescent (again)

©Will DeWitt 2020

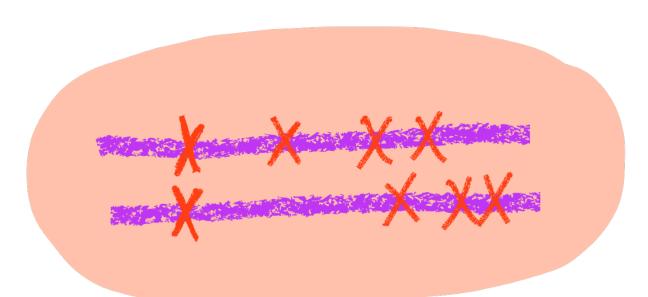


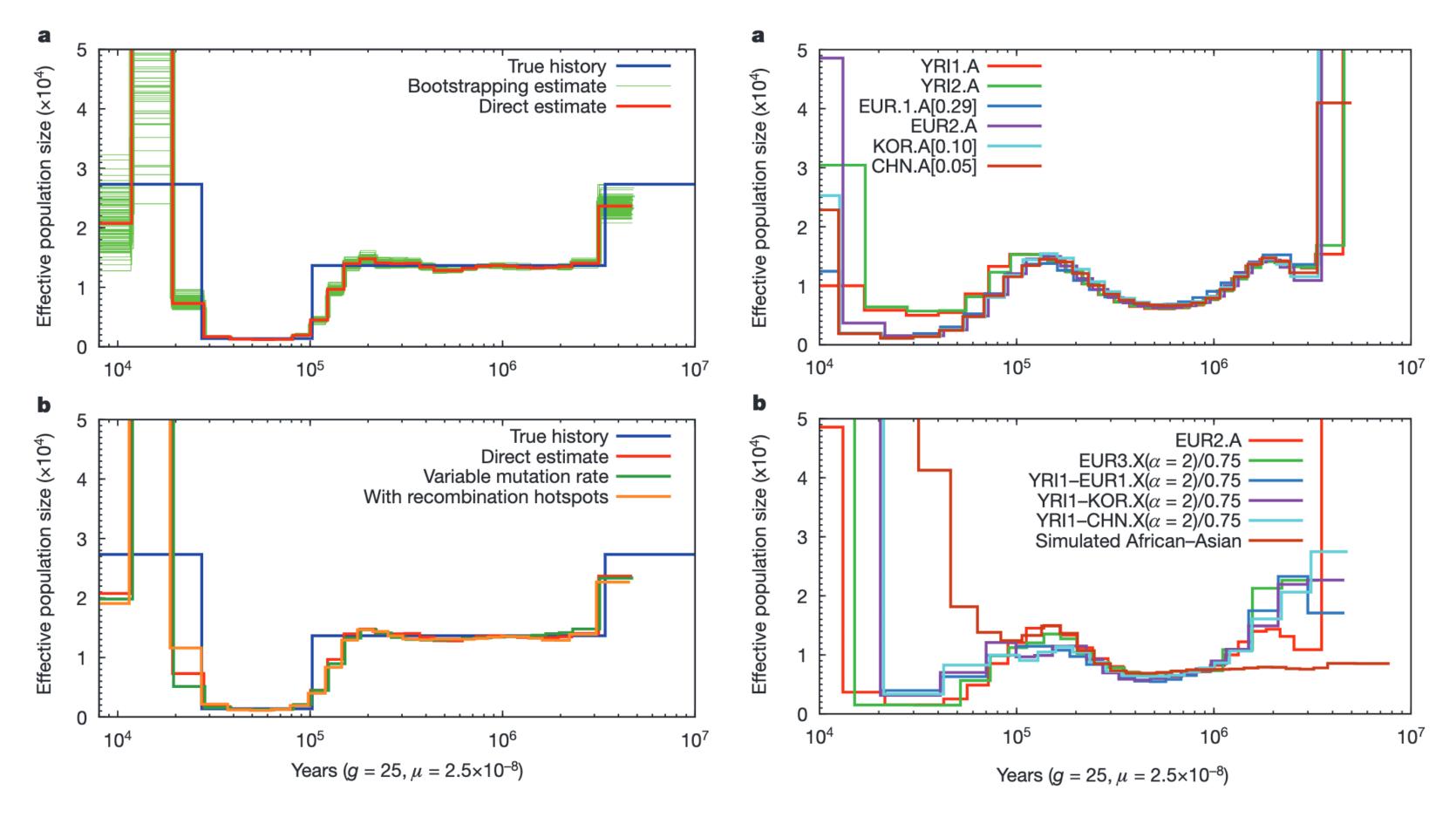


# LETTER

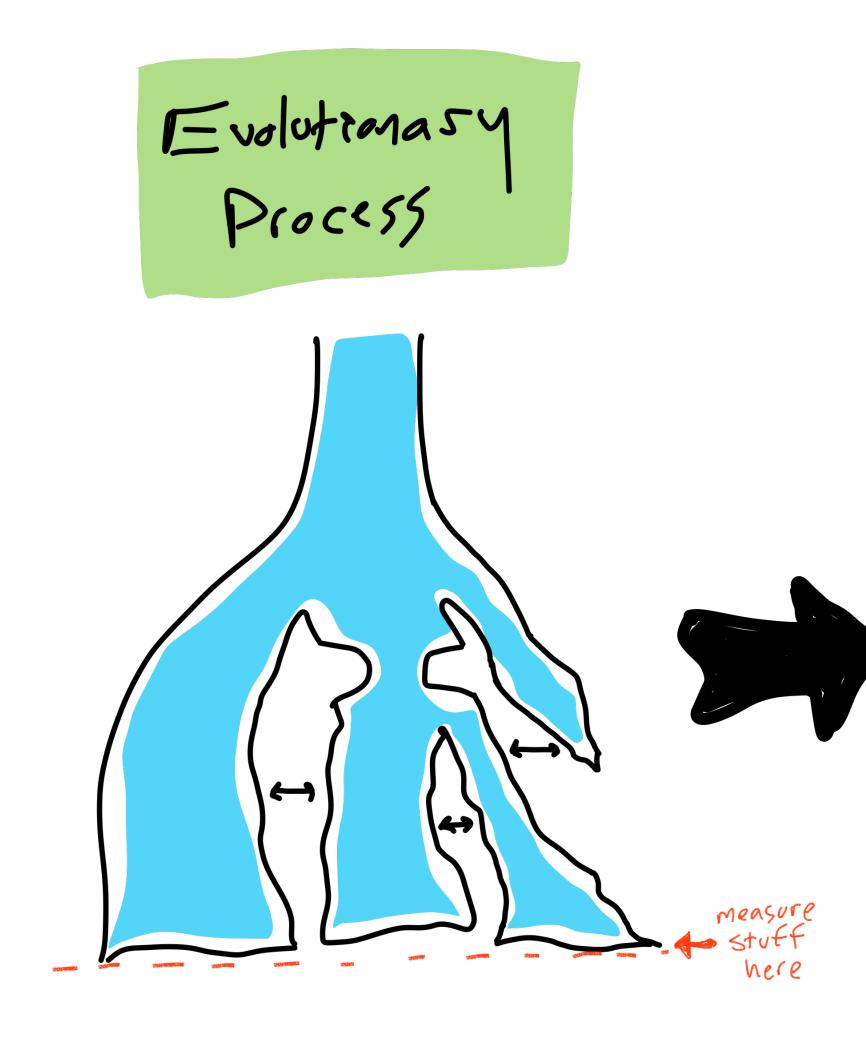
# Inference of human population history from individual whole-genome sequences

Heng Li<sup>1,2</sup> & Richard Durbin<sup>1</sup>

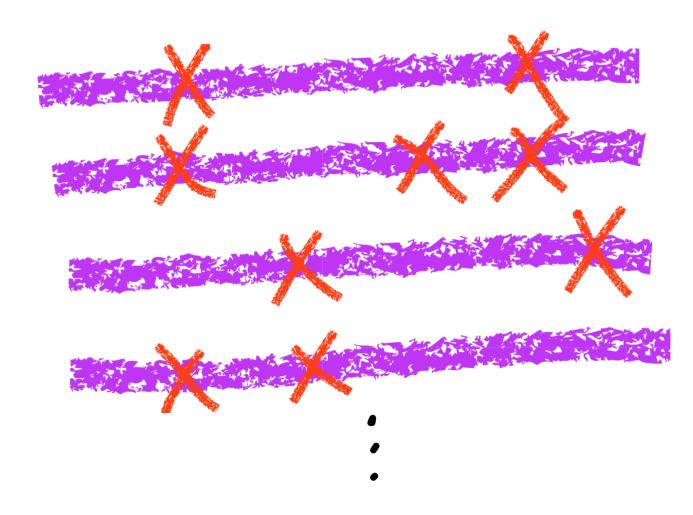




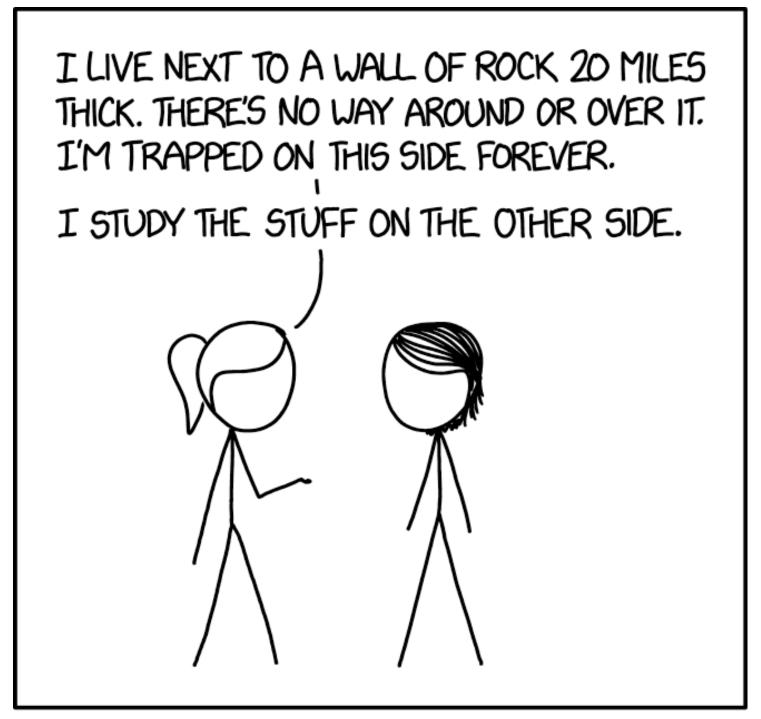
# The big picture



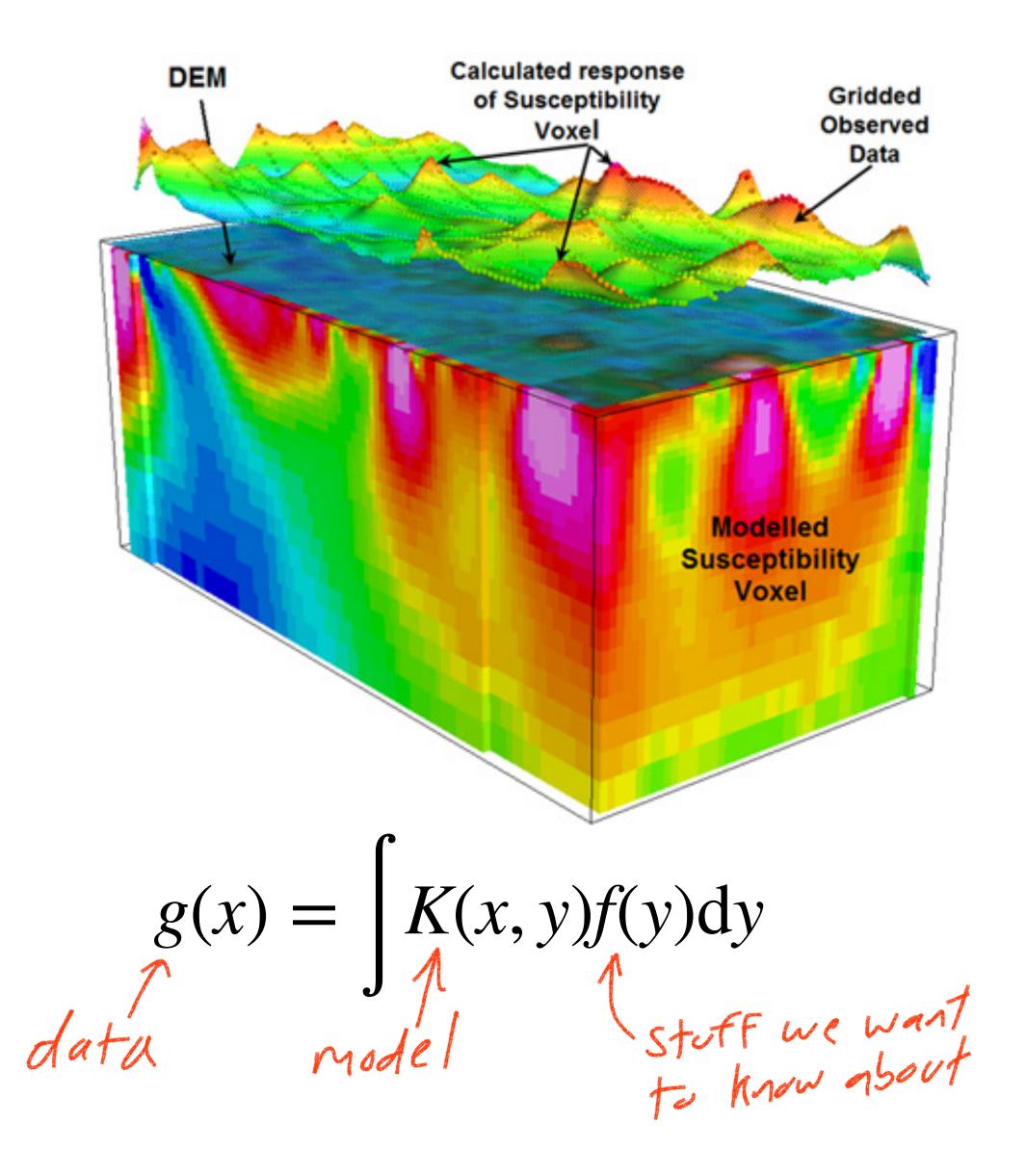
Cenetic Variation



# **Inverse problems**



MANTLE GEOLOGY SEEMS LIKE THE MOST FRUSTRATING FIELD.

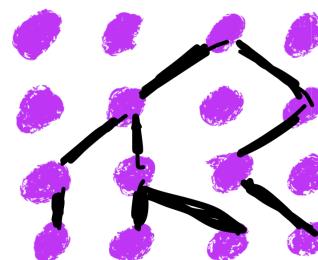


#### Inference frameworks Wright-Fisher process at the core

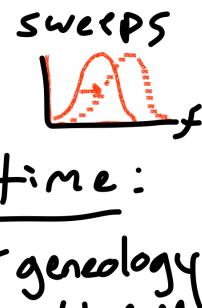
Summary statistics and simple calculations (small data, simple population) TT: average pairwise divergence S:#scgregating sites T: deviation from D neutrality 

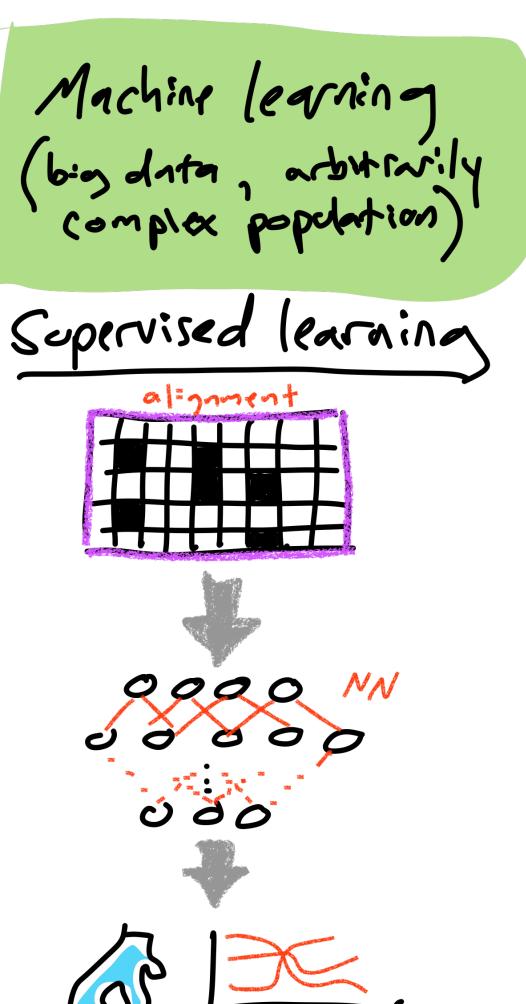
Forward fime; · PDEs / diffusion · sclective sweeps the files Revarse fine: · coalescent geneology · conlescent HMM





Probabalistic models (big data, more complex populations)



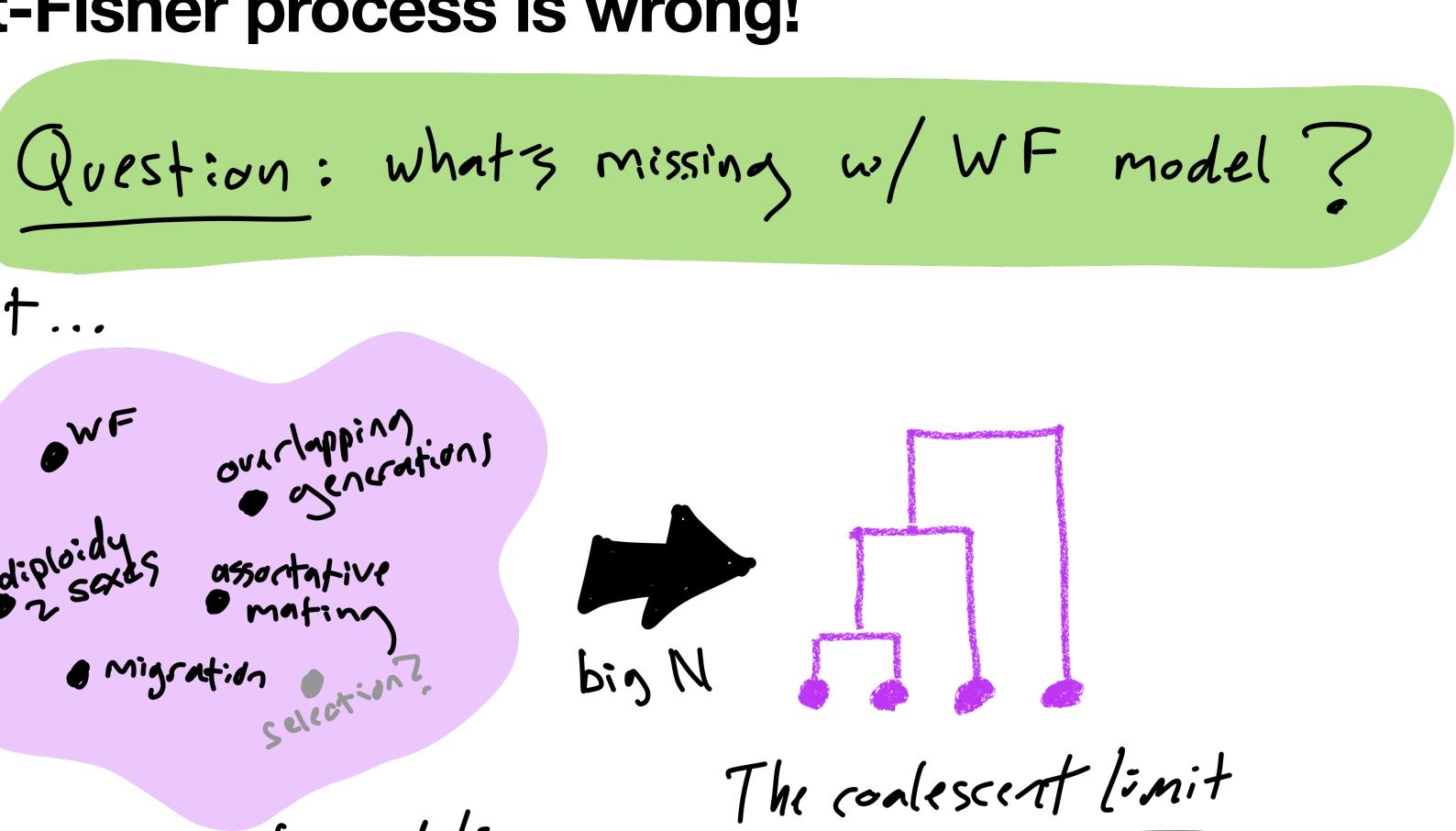


#### Problem The Wright-Fisher process is wrong!

Tt turns out ...

our (appin) Serverations associative 

Universe st models (WF just one)



Universality PV=nRT Ohnos, where are the molecoles?



#### **Cole-escent theory** Inspired by GENOME 551 with Cole Trapnell

20 students in a class, numbered 1,2,..., 20

Each day of class, professor rolls 20-sided die to choose a student to call on

Question: How many classes do I expect it to take me to get called on? Each class I get called w/ Prob. =

 $\implies IE[T] = \frac{1}{\frac{1}{20}} = ZO \quad classes$ 

#### **Cole-escent theory**

called on Z

When there are i students left to call on, the prob of solling one of these remaining i  $E[T_i] = \frac{1}{\frac{1}{20}} = \frac{20}{i}$   $\frac{3}{20}$   $T_4$ is  $\frac{1}{20}$ *j* = 20,19,...,1 Sa

 $\mathbb{E}\left[\mathcal{T}_{20}\right] = \mathbb{E}\left[\mathcal{T}_{20}\right] + \mathbb{E}\left[\mathcal{T}_{10}\right] + \dots \mathbb{E}\left[\mathcal{T}_{1}\right]$  $= 1 + \frac{20}{19} + \dots + \frac{20}{1} = 1 + 20 \sum_{j=1}^{10} \frac{1}{j} \times 72$ 

Question: How many classes do you expect until all 20 students have been

#### **Cole-escent theory**

Generalize: Class size N (and N-sided die) sample of  $n \le N$  students

$$IE[T_{n\to 0}] = \sum_{i=1}^{n} IE[T_i] = \sum_{i=1}^{n} \sum_{j=1}^{n} IE[T_j] = \sum_{i=1}^{n} IE[T_i] = \sum_{i=1}^{n} IE[$$

Each interval is geometrically  

$$IP(T_{i} = t_{i}) = \frac{i}{N} \left(1 - \frac{i}{N}\right)^{t_{i}-1}$$

$$P(t_{i}) \simeq \frac{i}{N} e^{-\frac{i}{N}t_{i}}$$

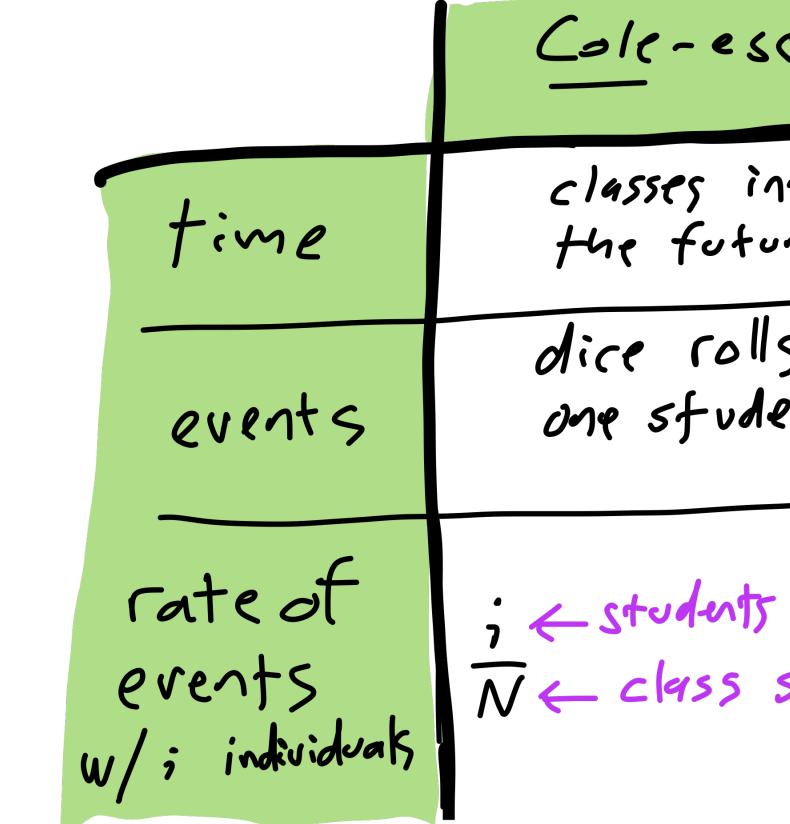
 $P = \frac{1}{N}$  $\frac{1}{i} = N \sum_{i=1}^{n} \frac{1}{i}$ 

y distributed

For large N: -> approx. exponential dist. p(t:) rate in Memosyless:  $P(t_{i}|t_{j+1}) = P(t_{j})$ 

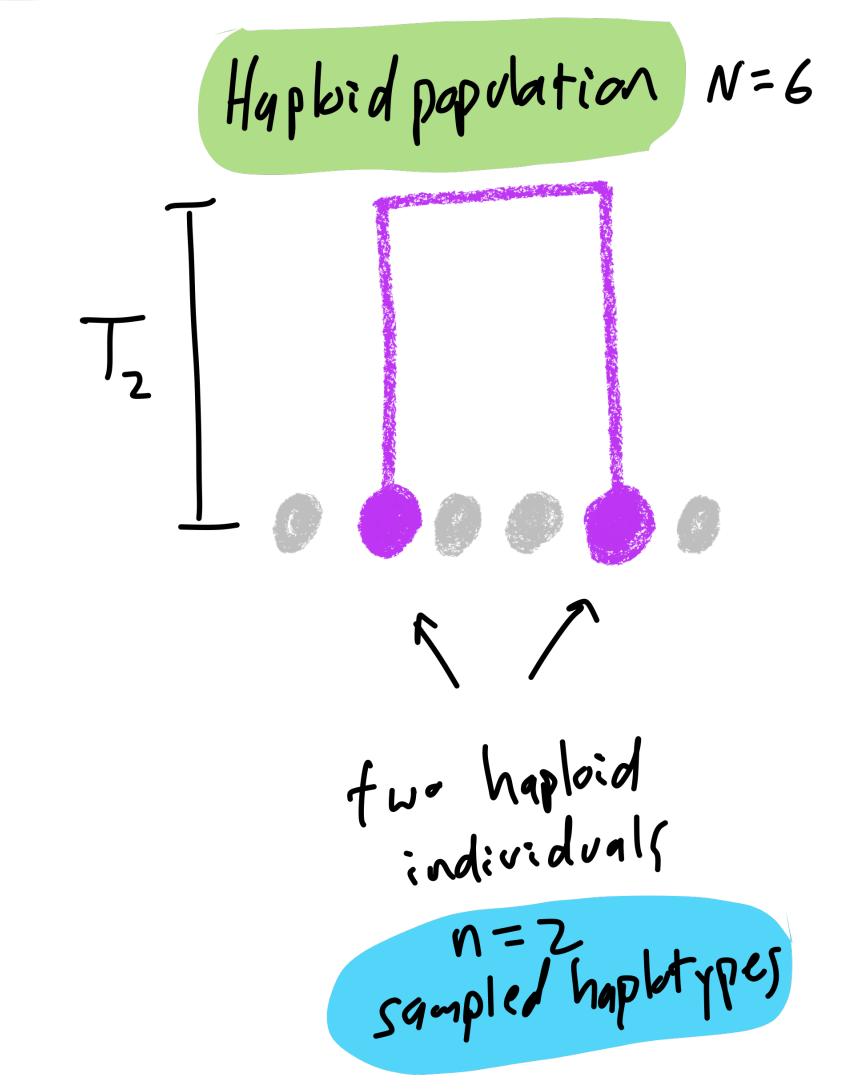


#### **Coalescent theory** Only slightly fancier



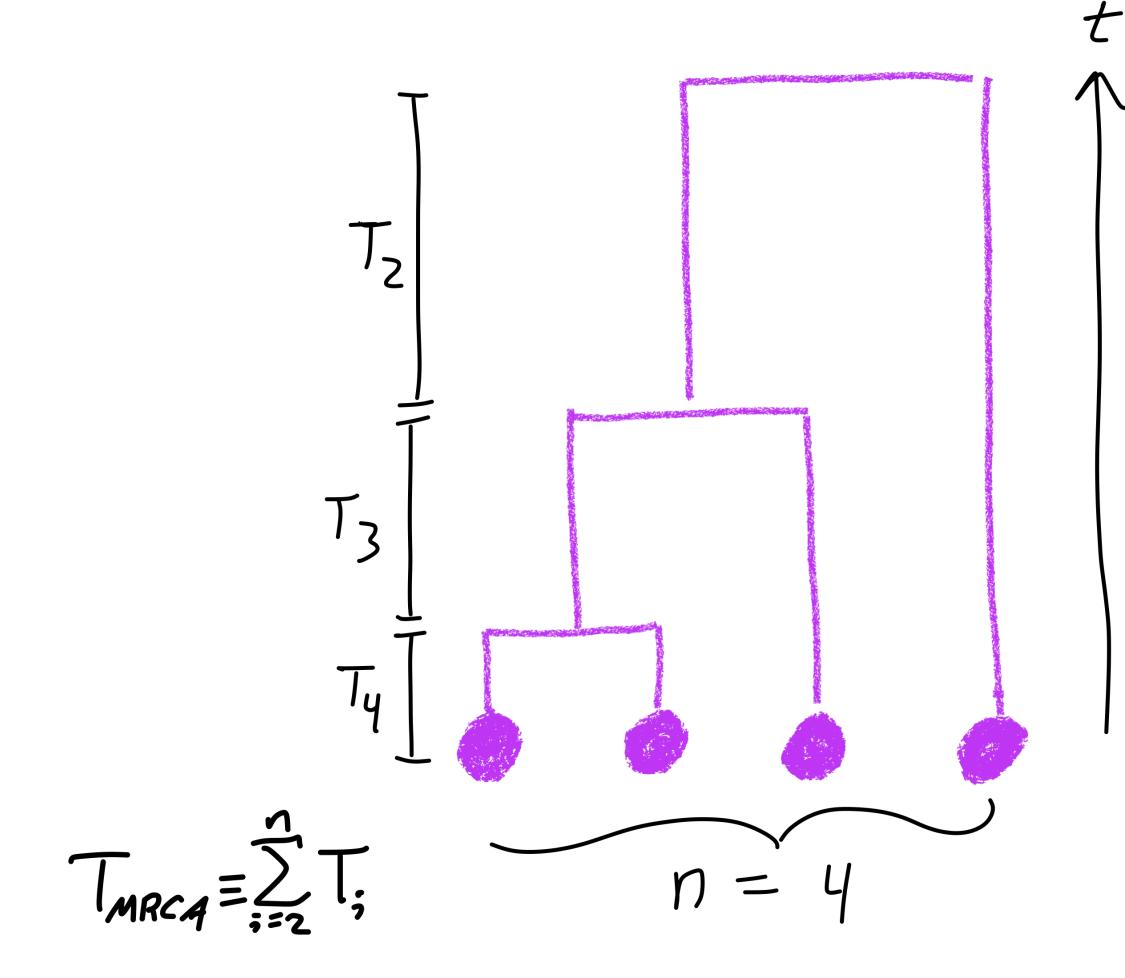
| escent                 | coalescent                                                                                                |   |
|------------------------|-----------------------------------------------------------------------------------------------------------|---|
| into<br>fore           | generations into<br>the past                                                                              |   |
| olls,<br>vdent         | coalescences,<br>pairs at individuals                                                                     |   |
| nts uncalled<br>s size | $\binom{i}{2} \leftarrow = \frac{1}{2}i(i-1)$ , #pair<br>$2N \leftarrow p$ -pulation size<br>1 if diploid | ۶ |

#### **Coalescent theory** Watch those factors of 2!

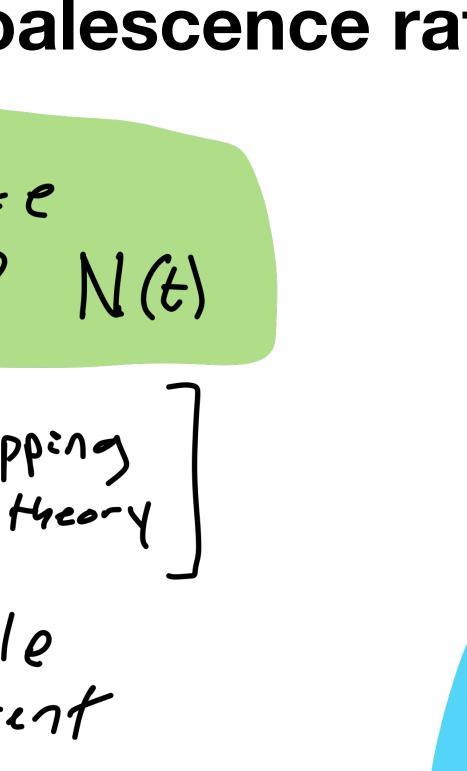




#### **Coalescent theory** Updating the previous results



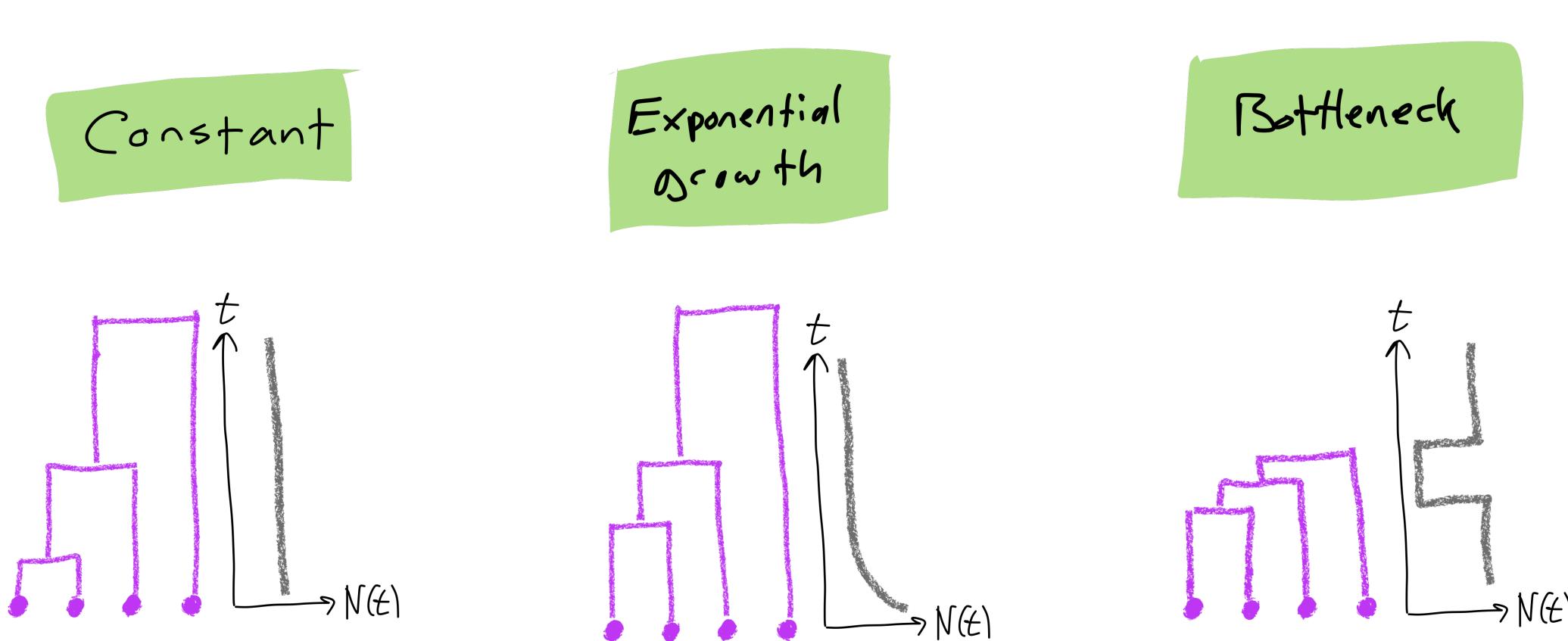
#### **Coalescent theory** Population size determines coalescence rate



The details:  $\frac{P(T_{i}=t_{i}) = \frac{(i)}{2N_{e_{i}}} \prod_{j=1}^{t_{i-1}} (1 - \frac{(i)}{2N_{j}})$   $\frac{b_{ij} N}{P(t_{i}) = \frac{(i)}{2N(e)}} = \frac{(i)}{2N(e)} = \frac{(i$ 

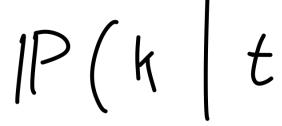


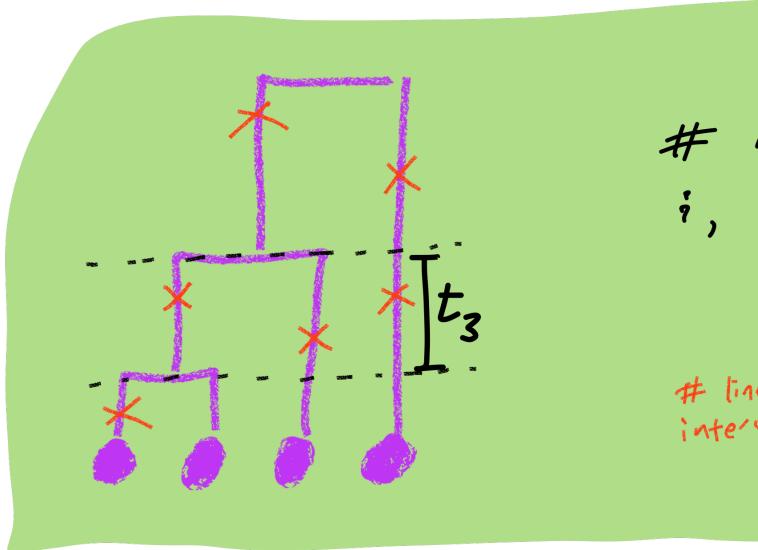
#### **Coalescent theory** Population size determines coalescence rate



#### **Coalescent theory** Mutations





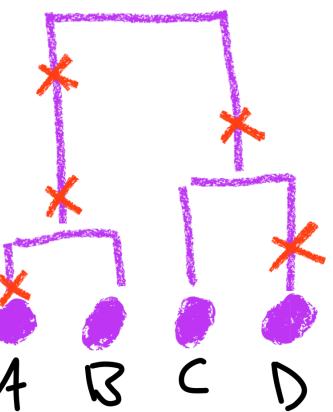


$$f(x) = \frac{(ut)^{k} e^{-ut}}{k!}$$

# mutations in intercoalexent interval i, of length t;, is Paisson rv w/mean int; # lines in inter interval 5

#### **Coalescent theory Genetic diversity**

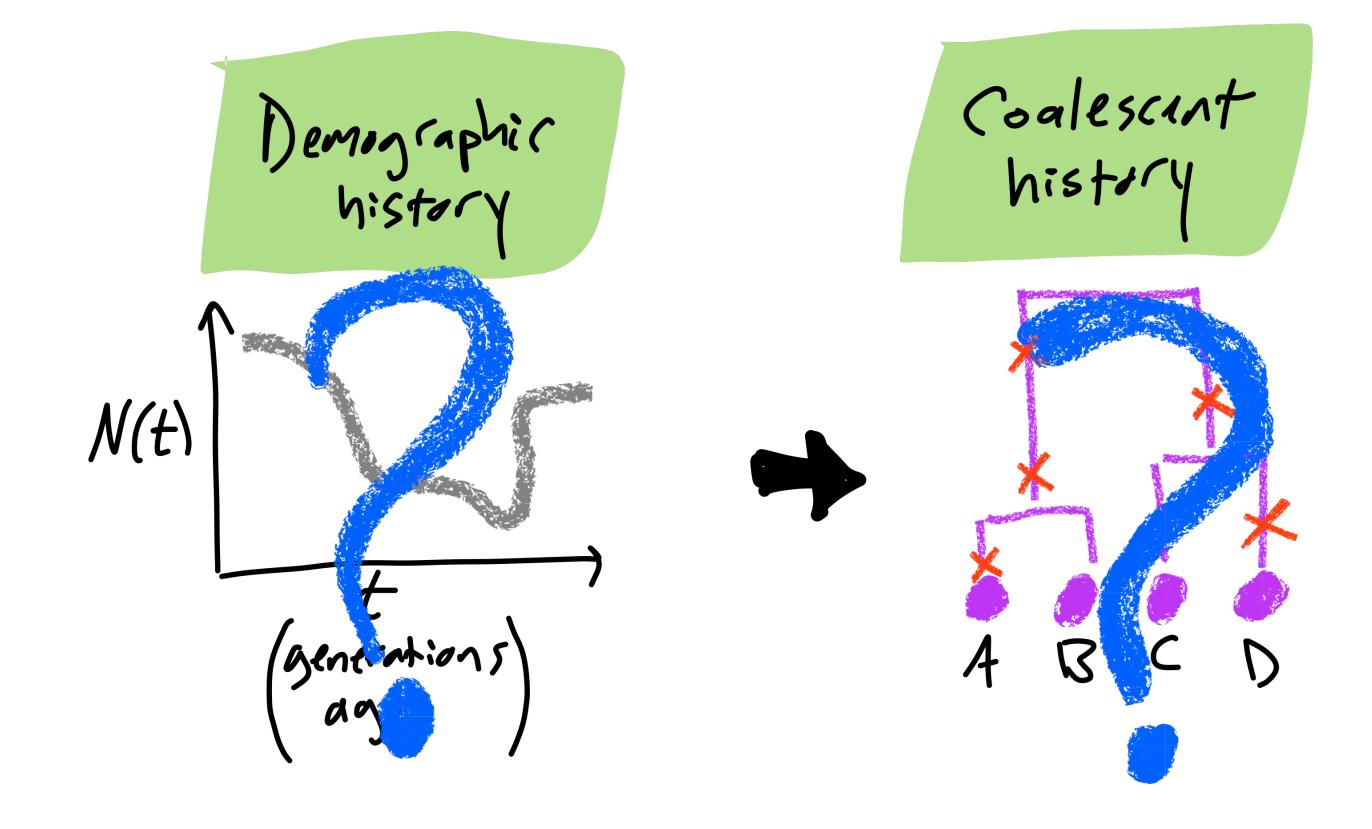
Coalescant history Demographic history N(t)generations 000 J



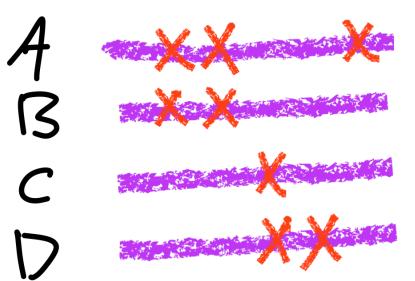




#### **Coalescent theory** Genetic diversity

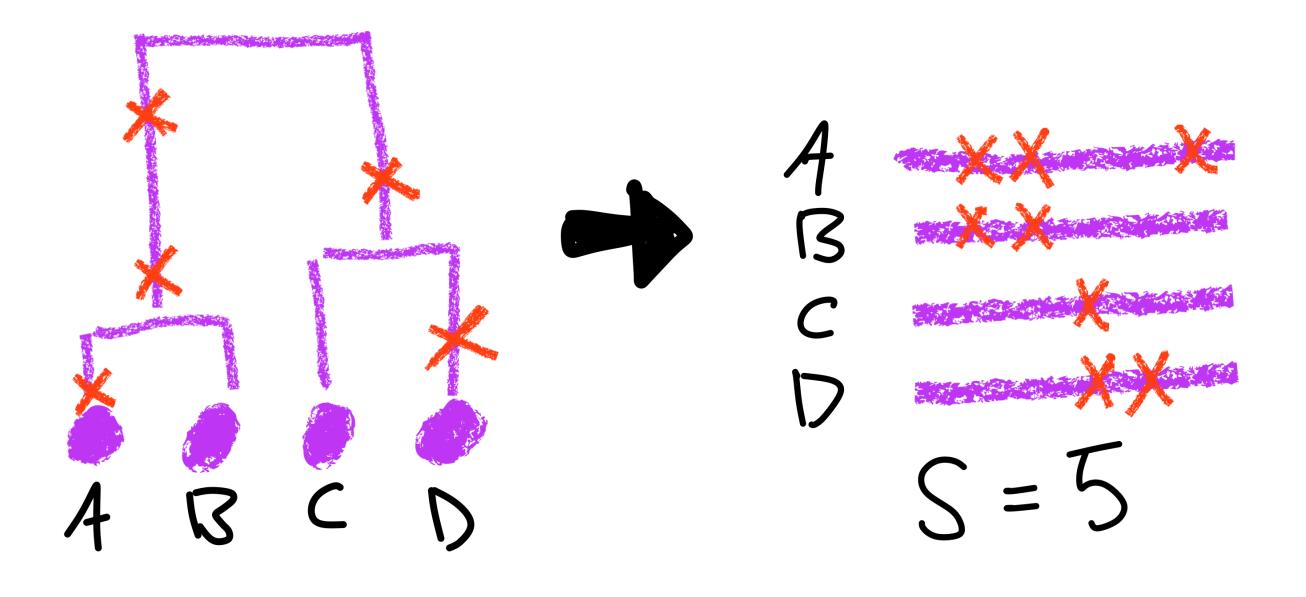


Data



#### **Coalescent theory Genetic diversity**

# segregating sites, S, equals # mutations in the sample's history (infinite sites approximation)



Constant N case:  $\mathbb{E}[S] = \mathcal{M}\mathbb{E}[\mathcal{T}_{total}]$  $= u \sum_{i} E[T_i]$  $= \mathcal{M} \sum_{i=1}^{n} \frac{2N}{\binom{i}{2}}$  $= 4 M N \sum_{j=1}^{n-1} \frac{1}{2}$ 



#### **Recap** Good to know for homework

Intercoalescent times as intercoalescent interval i  $\frac{1}{1}$ ,  $N = XP\left(\frac{2N}{2}\right)$ 

# mutations on branches as  $k \sim Pois \left( \underbrace{Mt}_{A} \right)$ motation # motations

e indep. exponential 
$$rvs$$
  
 $for i = n, n-1, ..., 2$ 

### **Next time**

# The coalescent with recombination

Sample Frequency Spectrum (SFS)

Coalescent hidden Markov model

