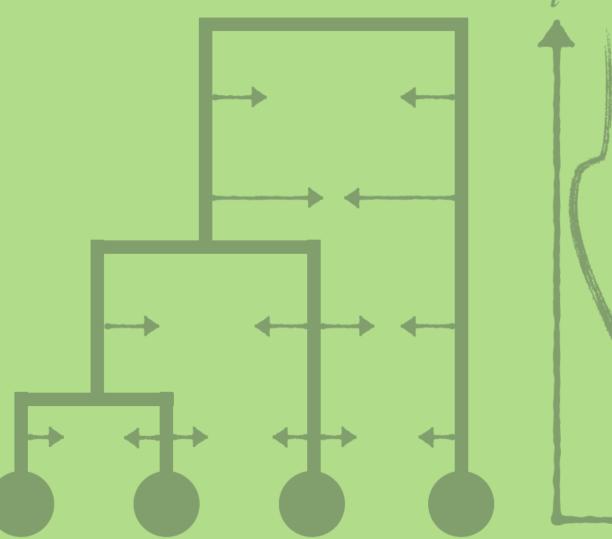
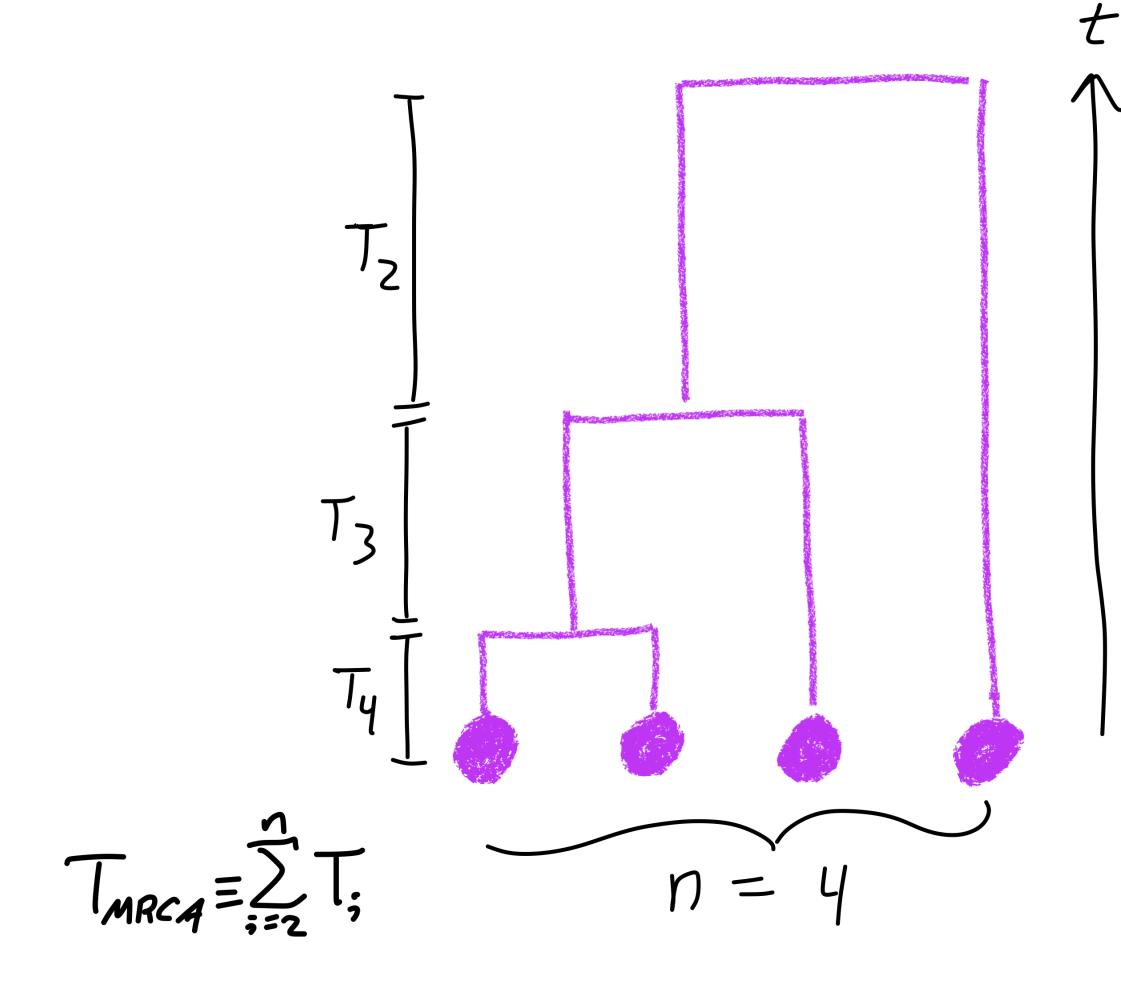
GENOME 541: population genetic inference II. The coalescent with recombination

©Will DeWitt 2020



Previously on...

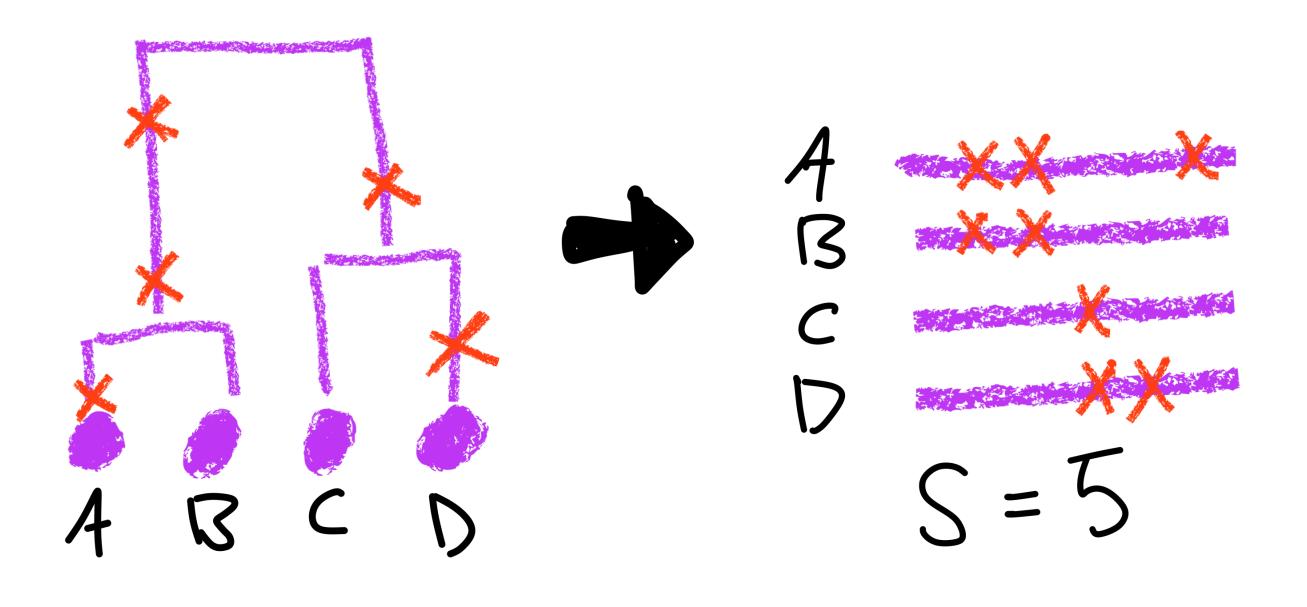


rintercoalescence" ZN(j \ (Z Exp. dist. $D(t_i) = \frac{\binom{i}{2}}{\frac{2}{2}}$ $-\frac{\binom{i}{z}}{z_{N}}\mathcal{I};$

· Each pair is a process w/rate = • The pairs race to coalesce

Previously on...

segregating sites, S, equals # mutations in the sample's history (infinite sites approximation)



Constant N case: $\mathbb{E}[S] = \mathcal{M}\mathbb{E}[\mathcal{T}_{total}]$ $= u \sum_{i} E[T_{i}]$ $= \mathcal{M} \sum_{i=1}^{n} \frac{2N}{i} \frac{2N}{\binom{2}{2}}$ $=4MN\sum_{j=1}^{n-1}\frac{1}{j}$

Genetic diversity stats

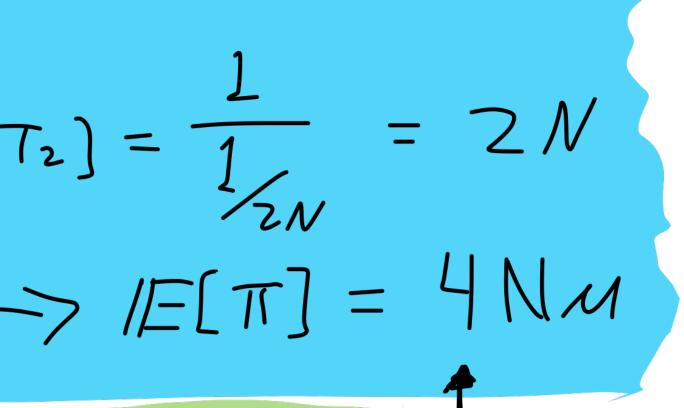
segregation sites, S, equals in the sample's history (infinite sites

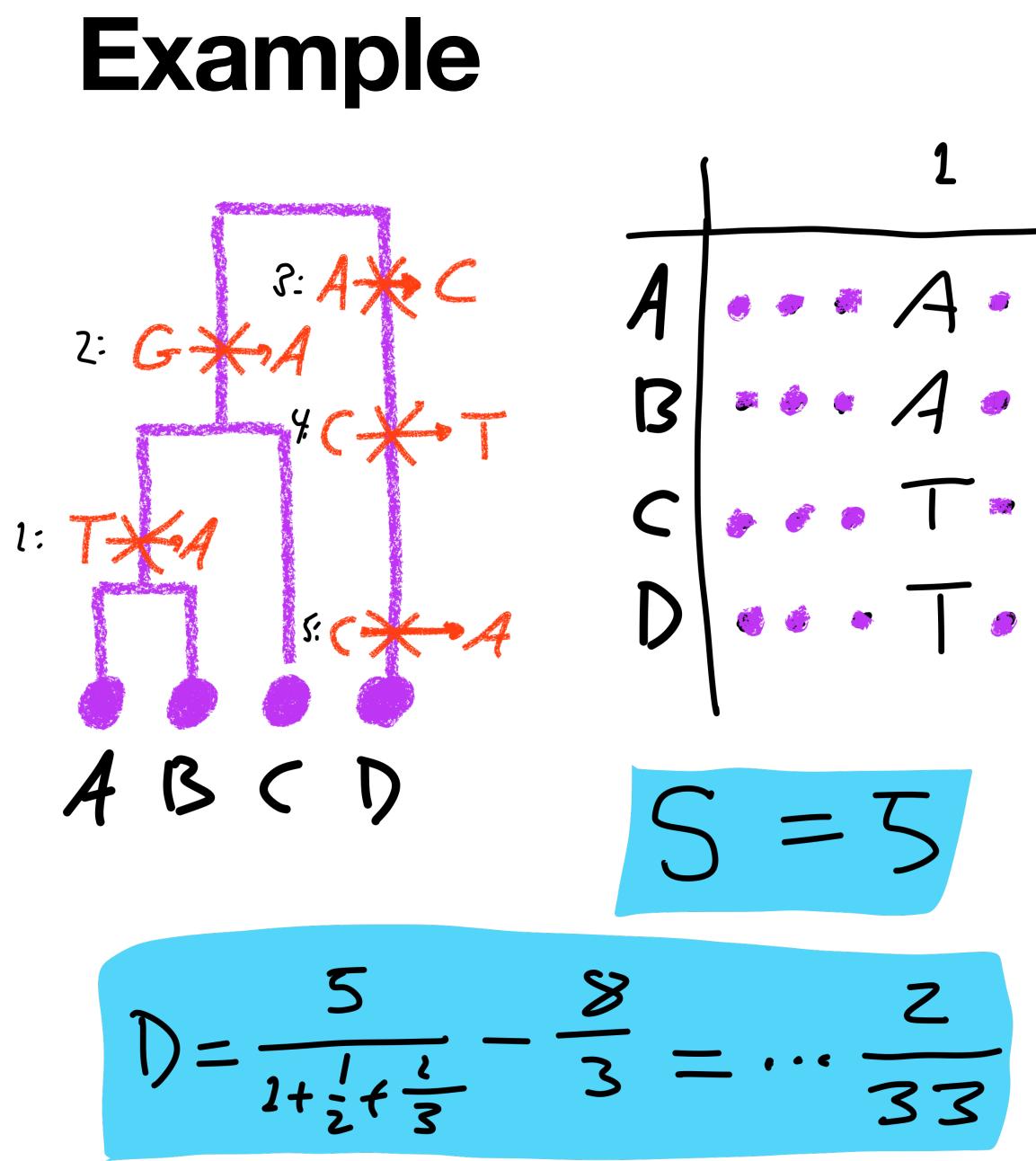
Pairwise divergence, M, # muta the history of two sampled haplot

Tajima's D: noll hypothesis, standard neutral coalescent (constant N) IELSJ $i \vdash \Gamma_{-} \neg$ N

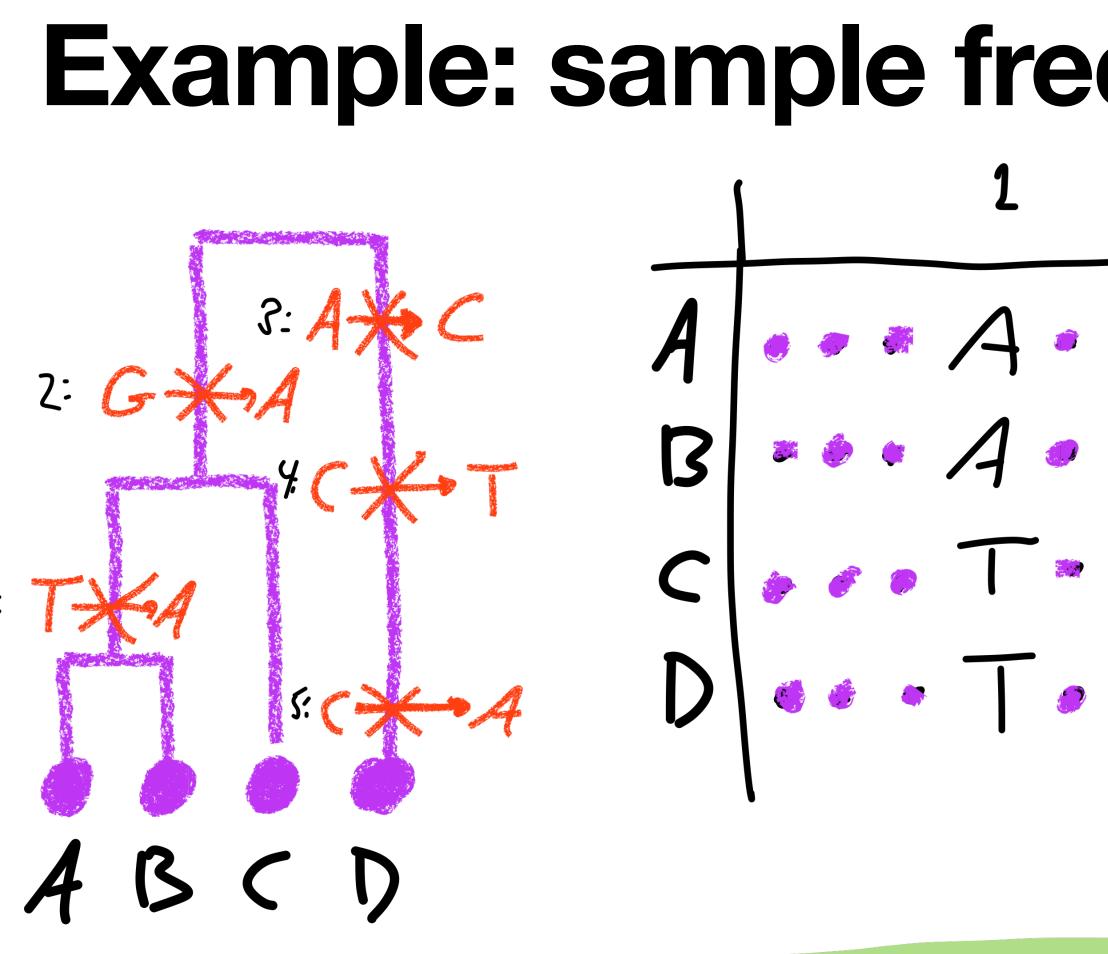
motations
approximation)
$$I = [S] = 4NM \sum_{i=1}^{n-1} \frac{1}{i}$$

ations in $I = [T] = 4NM$
ypes
Derivation:
 $I = [T_2] = \frac{1}{1_{2N}} = 2N$





4 23 · T · · · G · · · C · · · · T · · · A · · · $\widehat{\Pi} = \frac{1}{(4)} \left(0 + 1 + 5 + 1 + 5 + 4 \right) = \frac{8}{3}$



SFS: histogram of mutant allele frequencies $\overline{Z} = \left[\overline{Z}_{2}, \overline{Z}_{2}, \dots, \overline{Z}_{n-2} \right], \quad \overline{Z}_{i} = \underset{frequency}{\text{# motations with}}$

Example: sample frequency spectrum (SFS) o · To · Go · C · · To · A · ·

Theory: sample frequency spectrum (SFS)

SFS: histogram of mutant allele frequencies $Z = [Z_1, Z_2, ..., Z_{n-2}], Z_i = # M U$

With a bit if work ... $\mathbb{E}[Z_i] = \frac{4NM}{i}$ (for constant N) j=1,2,...,1-1

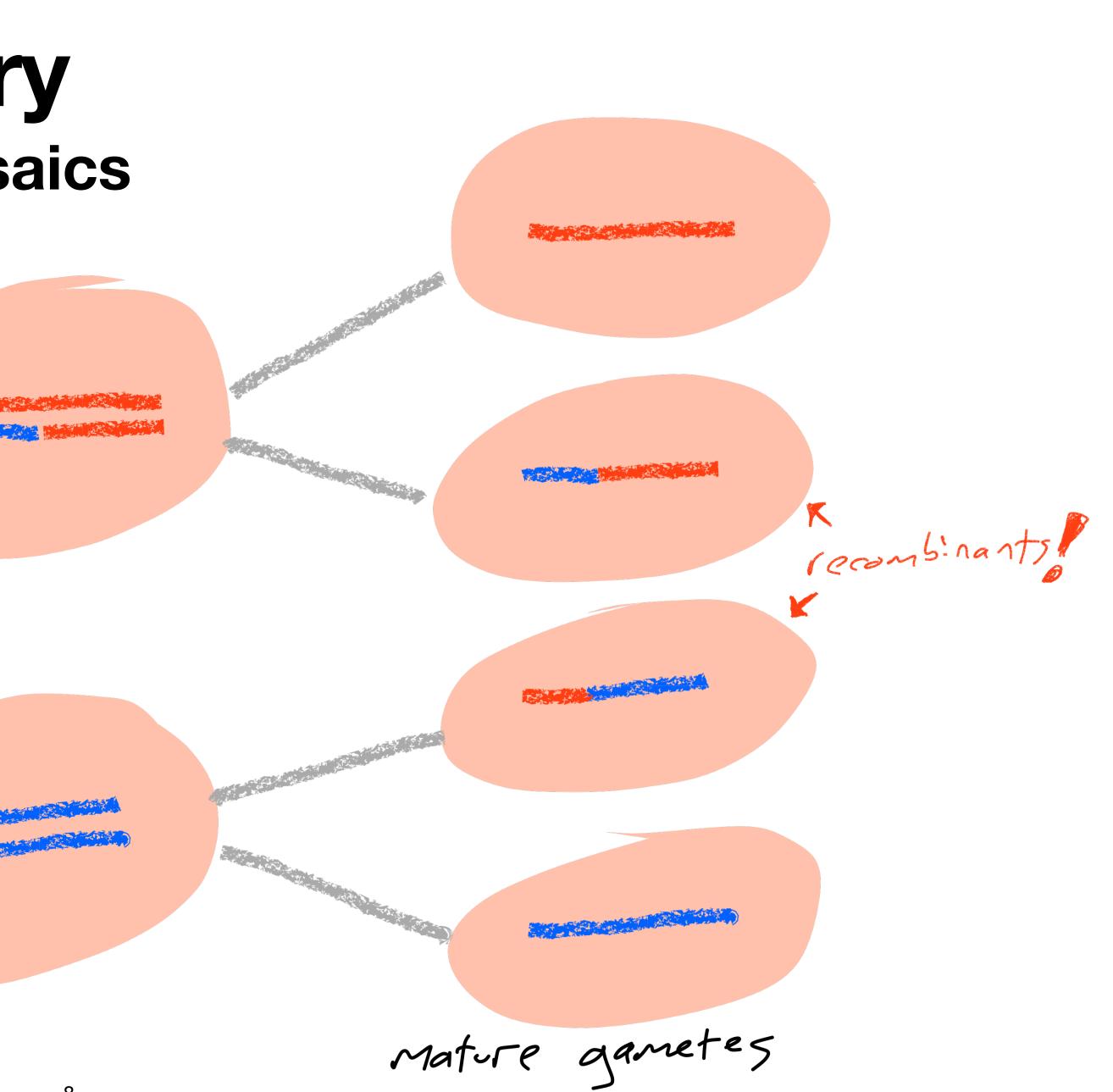
$$\log Z_{i} = \log \left(\frac{4Nu}{i}\right)$$

$$= \log 4Nu - \log i$$

$$\frac{2}{\sqrt{4Nu}} = \log 4Nu - \log i$$

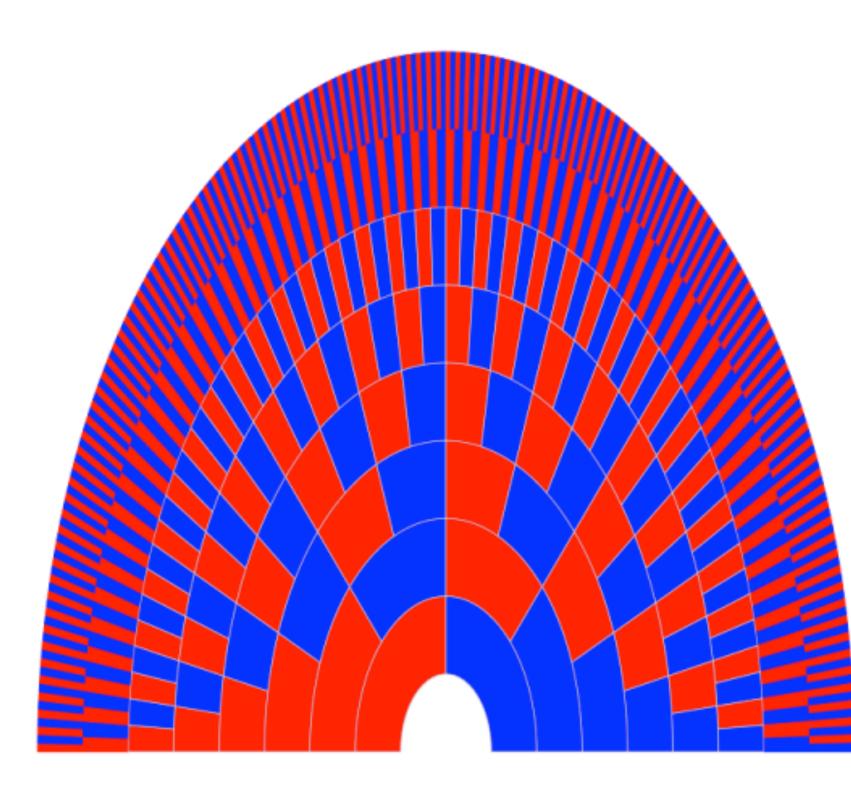
Non tree-like ancestry Recombining genomes as mosaics

Meistic reconsination oocyte/spermatocyte

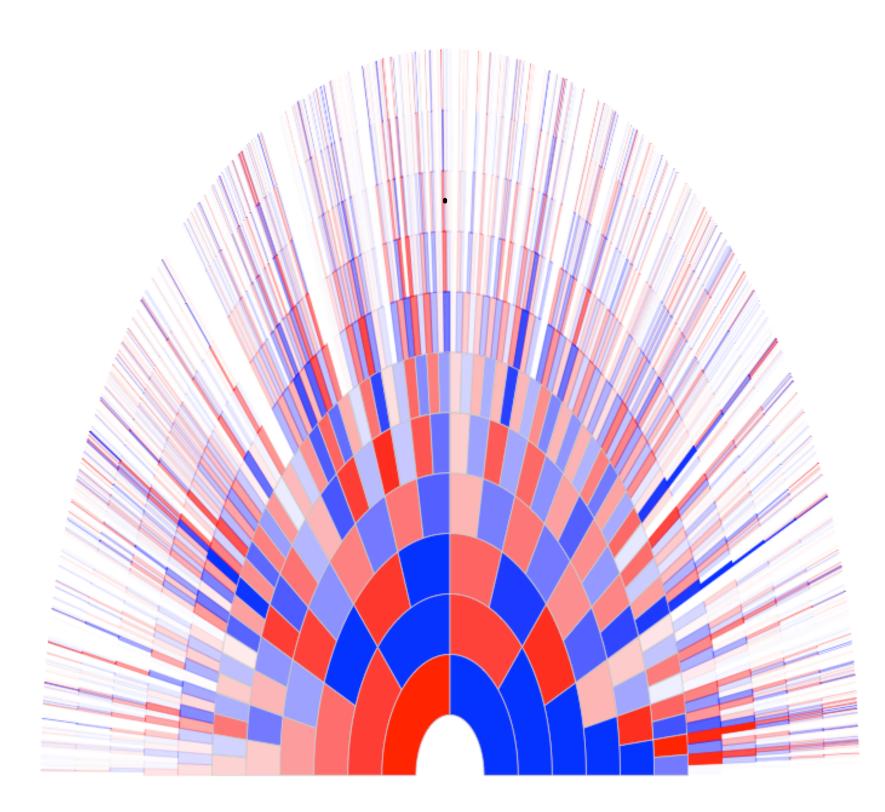


Non tree-like ancestry Recombining genomes as mosaics

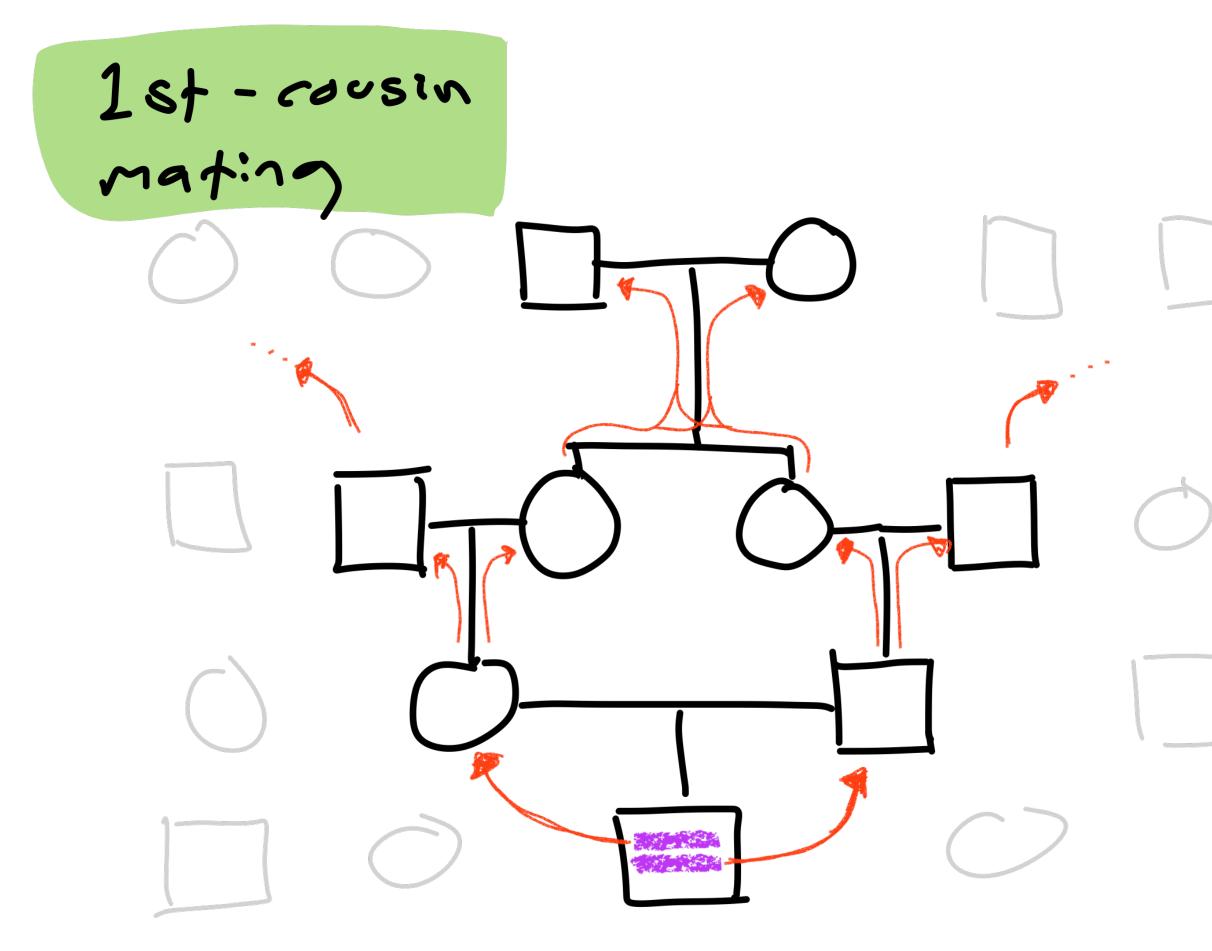
genealogical ancestry



https://gcbias.org/2013/11/11/how-does-your-number-of-genetic-ancestors-grow-back-over-time/



Non tree-like ancestry Recombining genomes as mosaics

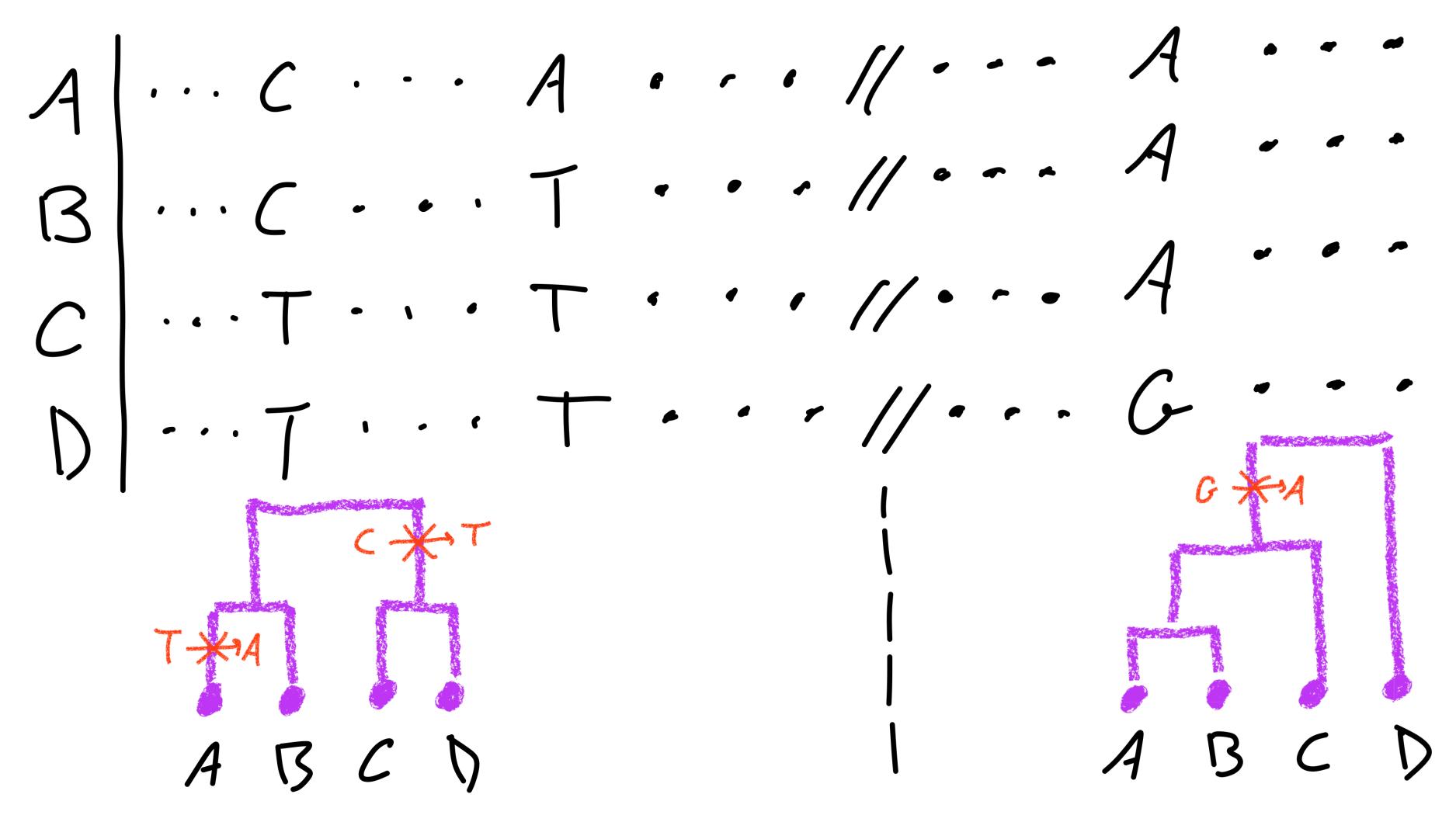


Question: · probability |S|to confesce in great grandporent? · Ofherwise much deeper coalescence great grand grand

The coalescent with recombination

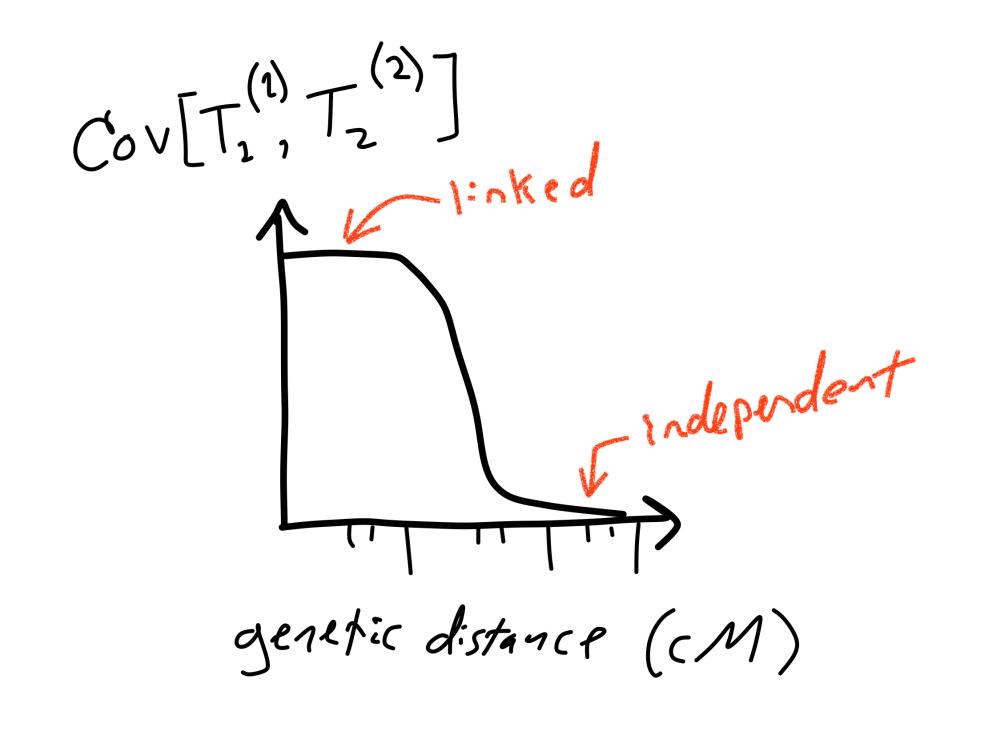
With recombination: add Poisson recombination events P Without <u>recombination</u>: coalescences and <u>mutations</u> above seconds. (11) t Complete (:nkage Geneabyies Jecorrelate (sample different TMR(A) \checkmark Quistion: does this change E[S], E[T], position Position IE[Z;]7

A sequence of trees

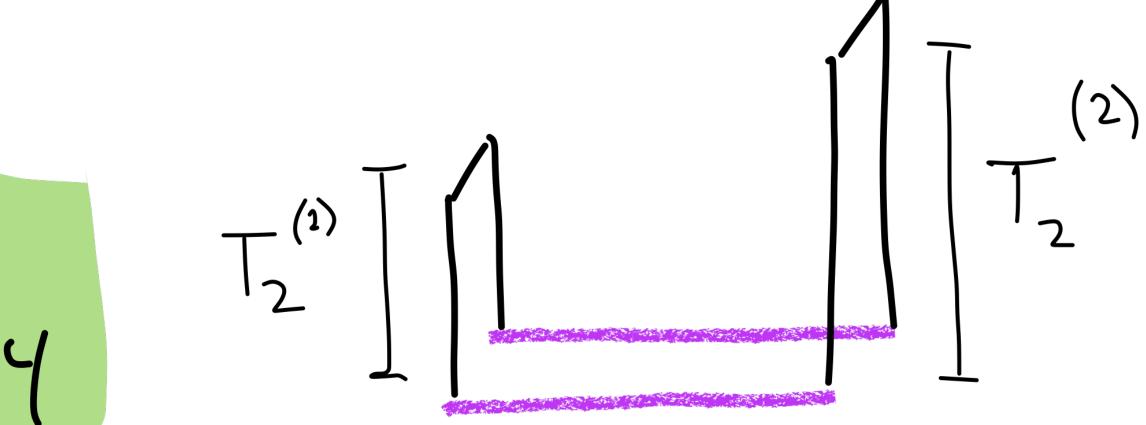


Decay of linkage

Larger genetic distance => recombination more likely

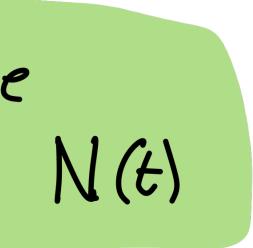


Deeper coalescence => shorter span TMRCA X I t ~ exp(4Nrt) genefic dist. to recomb. recombination cate

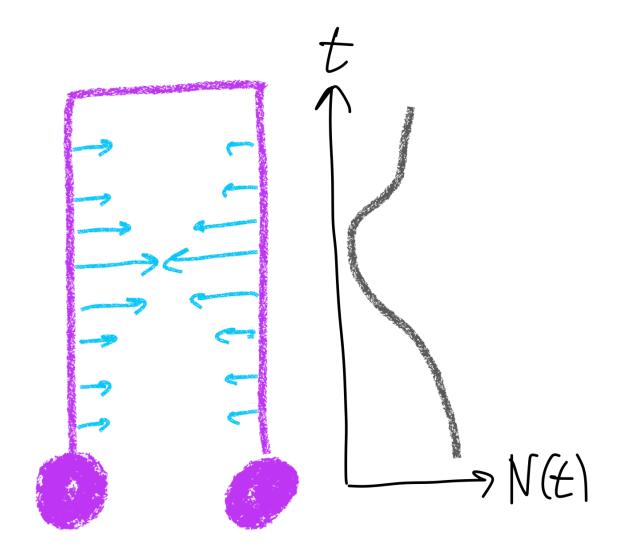


Previously on... Population size determines coalescence rate

- fime compressed when
 N(E) is small
- time stretched when
 N(E) is large



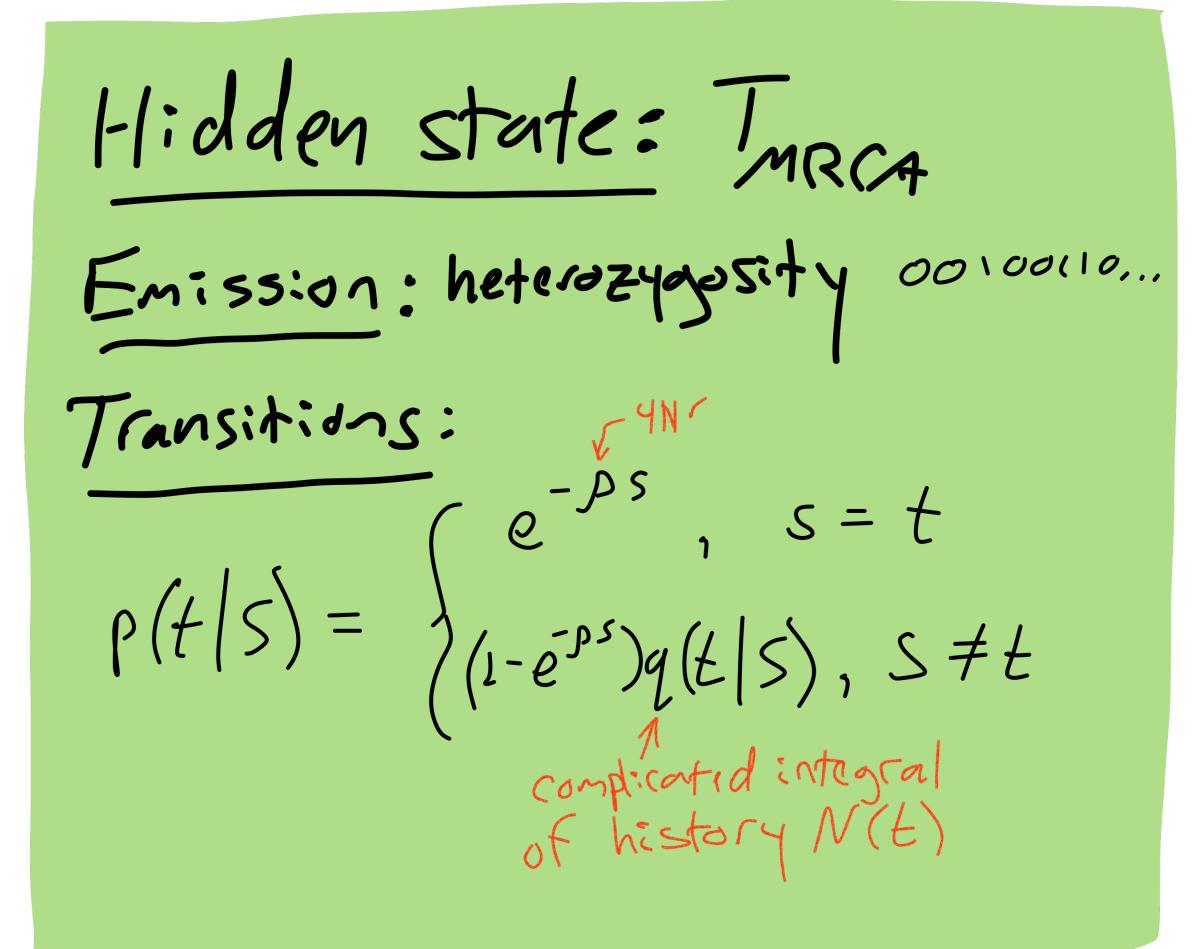
nle cent

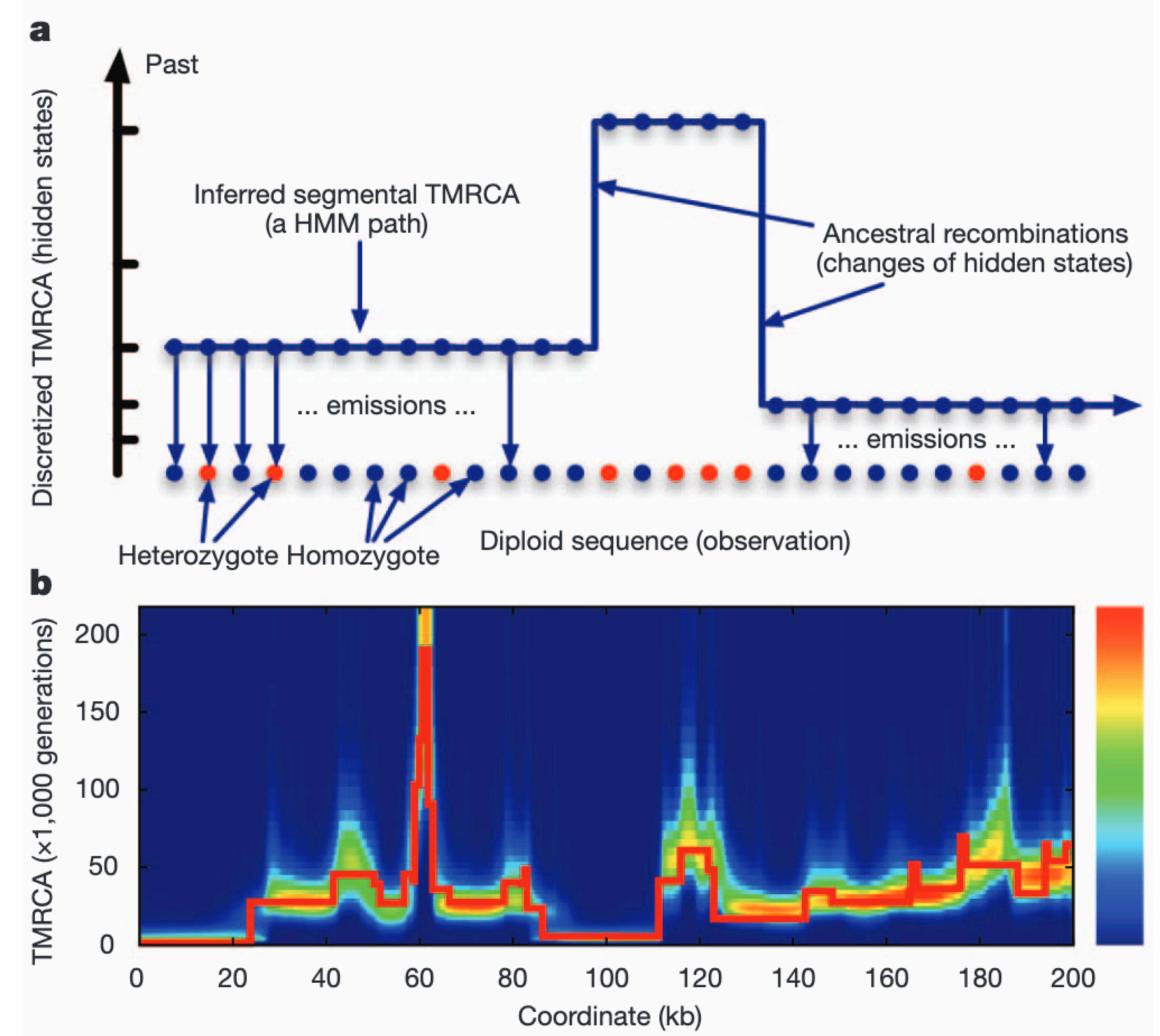


The details:

$$\frac{P(T_{i}=t_{i})}{P(T_{i}=t_{i})} = \frac{\binom{i}{2}}{\binom{i}{2}} \frac{\binom{i}{1}}{\binom{i}{1}} \binom{1-\binom{i}{i}}{2N_{j}} \\
\xrightarrow{V_{t_{i}} j=1}} \binom{1-\binom{i}{2}}{2N_{j}} \\
\xrightarrow{-\binom{i}{2}} \binom{j}{2} \frac{ds}{2N(s)} \\
\xrightarrow{V(t_{i})} = \frac{\binom{i}{2}}{2N(t)} \\
\xrightarrow{inhomogeneous Poisson process}$$

Coalescent HMMs Pairwise sequential Markov coalescent (PSMC)



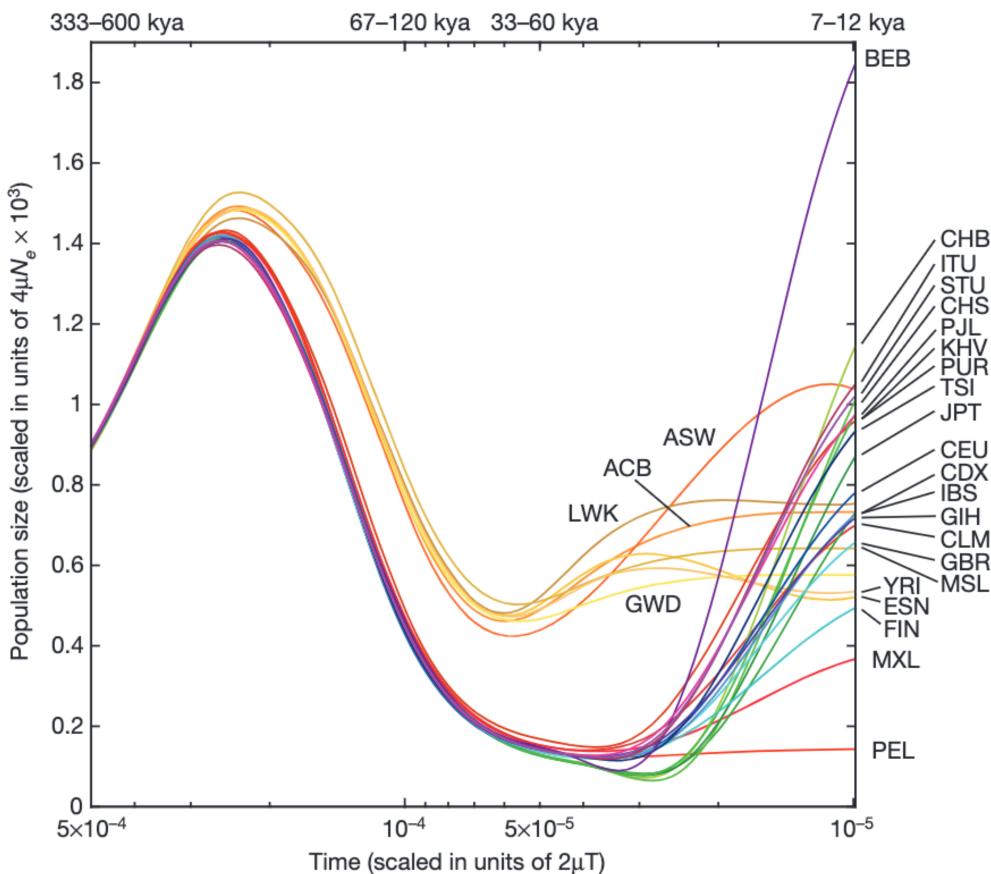


ARTICIF

A global reference for human genetic variation 333–600 kya 1.8

The 1000 Genomes Project Consortium*

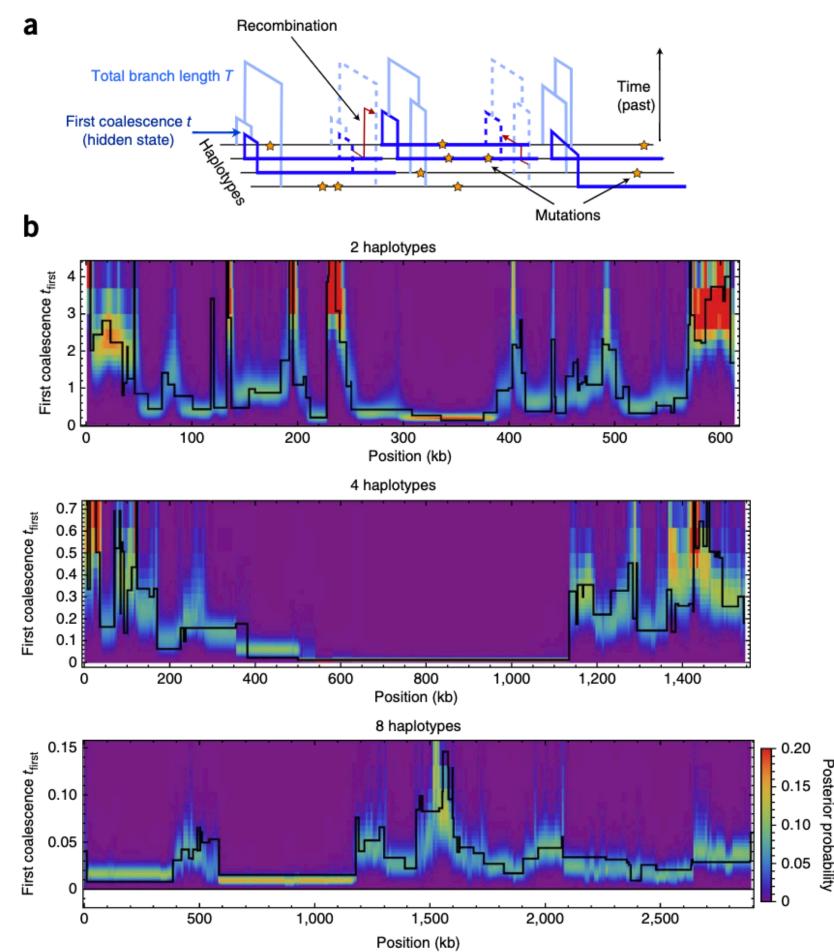
Averaging indv. estimates to get pop estimate



Generalizing beyond diploids

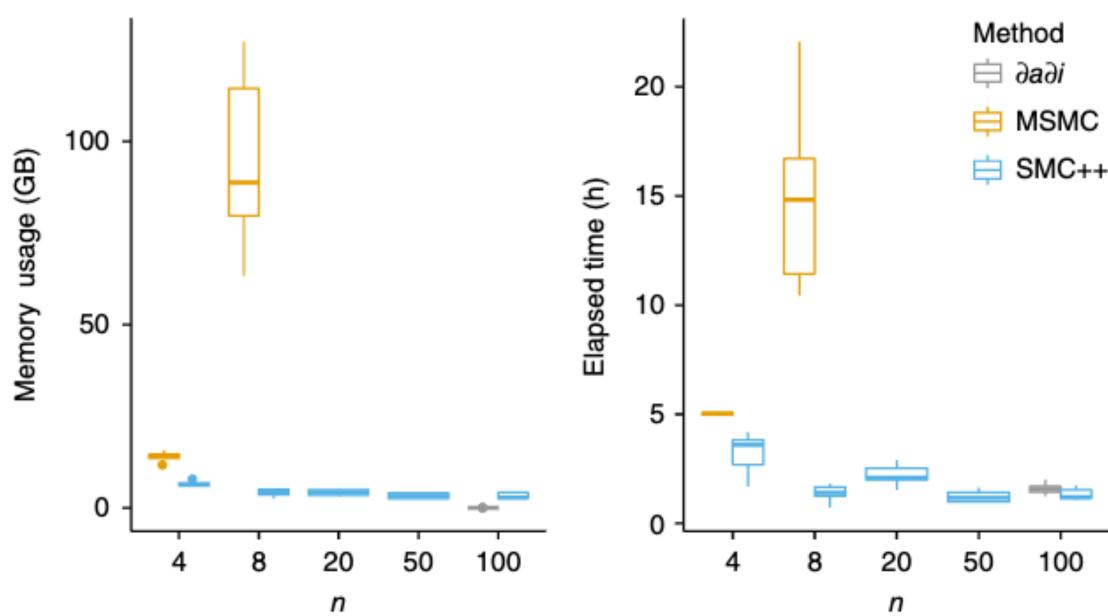
Inferring human population size and separation history from multiple genome sequences

Stephan Schiffels & Richard Durbin



Robust and scalable inference of population history from hundreds of unphased whole genomes

Jonathan Terhorst¹, John A Kamm^{1,2} & Yun S Song¹⁻⁴

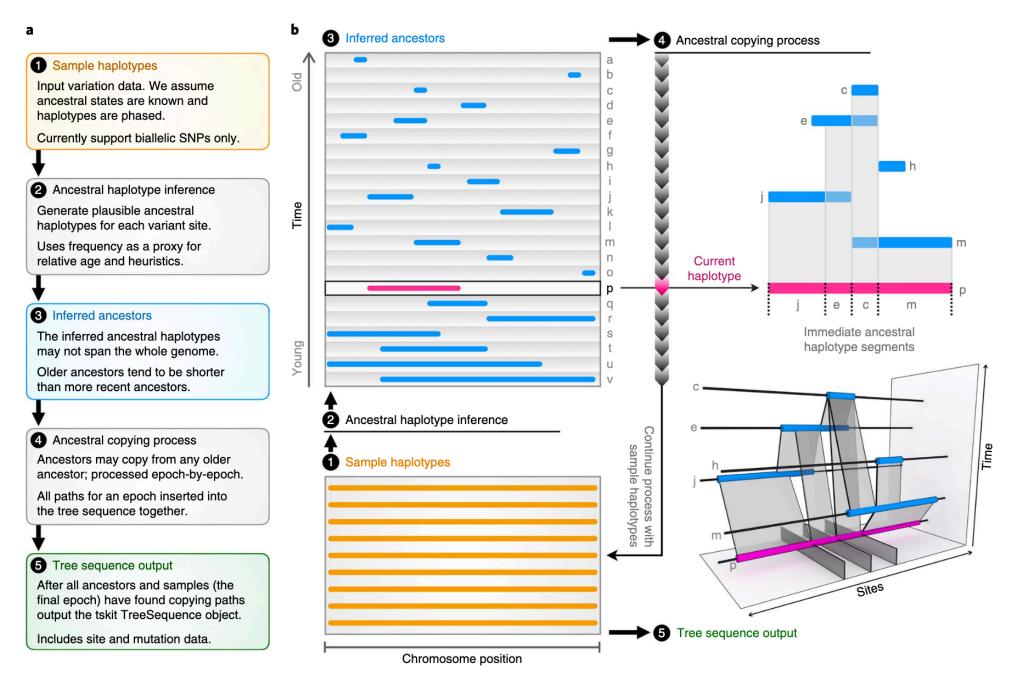


The future: tree sequence inference

ARTICLES https://doi.org/10.1038/s41588-019-0483-y

Inferring whole-genome histories in large population datasets

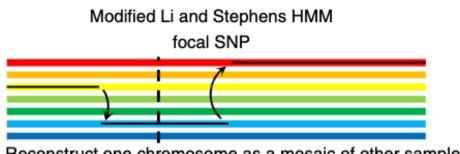
Jerome Kelleher[®]*, Yan Wong, Anthony W. Wohns[®], Chaimaa Fadil[®], Patrick K. Albers[®] and Gil McVean



nature genetics https://doi.org/10.1038/s41588-019-0484-x

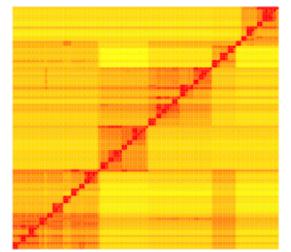
A method for genome-wide genealogy estimation for thousands of samples

Leo Speidel¹, Marie Forest², Sinan Shi¹ and Simon R. Myers^{1,3*}

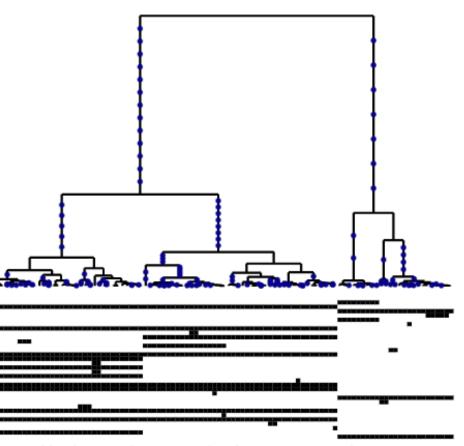


Reconstruct one chromosome as a mosaic of other samples

Store position specific distance matrix containing transformed probabilities of copying from each other sample



Hierarchical clustering and coalescent model-based branch length estimation produce local trees



Haplotype data sorted using constructed tree

