utils module#

Utilities needed by the rest of the package.

class bdms.utils.RandomizedSet(items=())#

Bases: object

A set-like data structure that supports random sampling with constant time complexity.

Example

>>> import bdms

Initialize with any iterable of hashable items.

>>> rs = bdms.utils.RandomizedSet("abc")
>>> rs
RandomizedSet('a', 'b', 'c')
>>> len(rs)
3

Add an item.

>>> rs.add('d')
>>> rs
RandomizedSet('a', 'b', 'c', 'd')
>>> len(rs)
4

Choose a random item.

>>> rs.choice(seed=0)
'd'

Remove an item.

>>> rs.remove('a')
>>> rs
RandomizedSet('d', 'b', 'c')

Iterate over the items.

>>> for item in rs:
...     print(item)
d
b
c

Reverse iterate over the items.

>>> for item in reversed(rs):
...     print(item)
c
b
d
Parameters:

items (Iterable[Hashable]) – Items to initialize the set with.

add(item)#

Add an item to the set.

Parameters:

item (Hashable) – The item to add.

remove(item)#

Remove an item from the set.

Parameters:

item (Hashable) – The item to remove.

Raises:

KeyError – If the item is not in the set.

choice(seed=None)#

Randomly sample an item from the set.

Parameters:

seed (int | Generator | None) – A seed to initialize the random number generation. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int, then it will be used to derive the initial state. If a numpy.random.Generator, then it will be used directly.

Return type:

Any

Returns:

The sampled item.